
Dr. Daniel Tauritz
Director, Natural Computation Laboratory

Associate Professor, Department of Computer Science
Research Investigator, Intelligent Systems Center

Investigator, Energy Research & Development Center

Grand Challenges in
Evolutionary Computing: Part I



Why we need Evolutionary Computing

• Modern society faces very complex problems
• Underlying computational problems typically 

very hard to solve (e.g., NP-Complete)
• Associated search spaces non-linear, non-

differentiable, non-continuous, non-convex
• Traditional optimization algorithms don’t work
• Evolutionary Algorithms (EAs) often do work



What Evolutionary Computing is

• The field of Evolutionary Computing (EC) 
studies the theory and application of 
Evolutionary Algorithms (EAs)

• EAs can be described as a class of 
stochastic, population-based optimization 
algorithms inspired by natural evolution, 
genetics, and population dynamics



Intuitive view of how EAs work

• Trial-and-error (aka generate-and-test)
• Graduated solution quality creates 

virtual gradient
• Stochastic local & global search of 

solution landscape
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Grand Challenges in EC

• Lack of Reproducibility of Experiments
• Overcoming the No Free Lunch Theorem
• Bridging the Gap between Theory & Practice
• Developing a Science for Parameter Tuning
• Developing a Science for Parameter Control
• Making EAs User Friendly for Non-EA Experts



Lack of Reproducibility of Experiments

• Lack of accepted benchmark problems
• Measuring performance is a tricky business
• Lack of standard algorithms & implementations
• Rich configurations require careful specification
• Pseudo-Random Number Generators matter
• Stochastic algorithms require statistical analysis
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No Free Lunch (NFL) Theorem

Informal definition:

All non-revisiting black box search heuristics have 
equal performance, for any measure of 
performance, when averaged uniformly over the 
space of all discrete optimization problems.



Overcoming the NFL Theorem

• Realize that we’re not interested in all problems
• Bad news: original 1997 NFL paper [1] 

sharpened in 2001 to any problem class closed 
under permutation [2]

• More bad news: in 2003 NFL was shown to 
apply to multi-objective optimization [3]

• Finally some good news: in 2005 coevolution 
was shown to exhibit free lunches [4]



NC-LAB loves free lunches!

• Showed coevolutionary free lunches for 
Maximization over all Test Cases [5]

• Showed free lunches for Pareto 
Coevolution (a relaxation of traditional multi-
objective evolutionary optimization) [6]

For everything you’ve ever wanted to know 
about NFL but were afraid to ask, see:

http://www.no-free-lunch.org/

http://www.no-free-lunch.org/
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The Theory & Practice Gap

Theory side of gap:
Rigorous run-time proofs for simplified EAs on 

artificial benchmark problems

Practice side of gap:
Mountains of experimental data of applying EAs 

to specific real-world problem instances



Bridging the Theory & Practice Gap

• Scalability through approximation [7]
• The New Experimentalism [8]
• Taxonomy of “natural” problem classes 

based on non-closure under permutation 
with corresponding free lunch proofs
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Parameter Tuning: What Needs Tuning

Standard EA Operators:
Parent selection, mate pairing, recombination, mutation, 

survival selection, termination condition

Standard EA Parameters:
Population size, initialization related parameters, parent 

selection parameters, number of offspring, 
recombination parameters, mutation parameters, 
survivor selection parameters, termination related 
parameters



Parameter Tuning Overview
Methods:
• Stock values
• Manual
• Monte Carlo sampling on few short runs
• Meta-tuning algorithm (e.g., Meta-EA)
Challenges:
• Exhaustive search infeasible, even assuming 

independency of parameters (which they’re not)
• Optimal values are problem dependent



Developing Parameter Tuning Science

• After decades of research, no efficient 
parameter tuning methods exist

• The problem space of parameter tuning is 
not well understood

• Parameter tuning is a class of optimization 
problem in its own right

• Does NFL hold for parameter tuning class?



References (1)
[1] David Wolpert and William Macready. No Free Lunch Theorems for Optimization. 

IEEE Transactions on Evolutionary Computation, 1(1):67-82, April 1997.
[2] C. Schumacher, M. D. Vose, and L. D. Whitley. The No Free Lunch and Problem 

Description Length. In Proceedings of the Genetic and Evolutionary Computation 
Conference - GECCO 2001, pages 565-570. Morgan Kaufmann, 2001.

[3] David Corne and Joshua Knowles. No Free Lunch and Free Leftovers Theorems for 
Multiobjective Optimization Problems. In Proceedings of the Evolutionary Multi-
Criterion Optimization (EMO 2003) Second International Conference, pages 327-
341. Springer LNCS, 2003.

[4] David Wolpert and William Macready. Coevolutionary Free Lunches. IEEE 
Transactions on Evolutionary Computation, 9(6):721-735, December 2005.

[5] Travis C. Service and Daniel R. Tauritz. A No-Free-Lunch Framework for 
Coevolution. In Proceedings of the Genetic and Evolutionary Computation 
Conference - GECCO 2008, pages 371-378, Atlanta, Georgia, July 12-16, 2008.

[6] Travis C. Service and Daniel R. Tauritz. Free Lunches in Pareto Coevolution. 
Submitted to the Genetic and Evolutionary Computation Conference - GECCO 2009.



References (2)
[7] Hsin-yi Jiang, Carl Chang, Daniel Tauritz, Shuxing Cheng, Taiming Feng, and Travis 

Service. A Framework for Estimating the Applicability of GAs for Real-World 
Optimization Problems, In review by IEEE Transactions on Evolutionary 
Computation.

[8] Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation: The 
New Experimentalism. Natural Computing Series. Springer, 2006.

Continued in Grand Challenges in
Evolutionary Computing: Part II


	Slide Number 1
	Why we need Evolutionary Computing
	What Evolutionary Computing is
	Intuitive view of how EAs work
	Slide Number 5
	Grand Challenges in EC
	Lack of Reproducibility of Experiments
	Slide Number 8
	Grand Challenges in EC
	No Free Lunch (NFL) Theorem
	Overcoming the NFL Theorem
	NC-LAB loves free lunches!
	Grand Challenges in EC
	The Theory & Practice Gap
	Bridging the Theory & Practice Gap
	Grand Challenges in EC
	Parameter Tuning: What Needs Tuning
	Parameter Tuning Overview
	Developing Parameter Tuning Science
	References (1)
	References (2)

