Funded Research Grants

SANDY: Sparsification-Based Approach for Analyzing Network Dynamics

PI: Sajal K. Das
Award amount: $163,067
Award date: 9/1/17 to 8/31/20

The goal of this three-year project, Sparsification-based Approach for Analyzing Network Dynamics (SANDY), is to develop a suite of scalable parallel algorithms for updating dynamic networks for different problems that can be executed on a wide range of HPC platforms. Dynamic network analysis will enable researchers to study the evolution of complex systems in diverse disciplines, such as bioinformatics, social sciences, and epidemiology. The SANDY project is expected to initiate a new direction of research in developing parallel dynamic network algorithms that will benefit multiple analysis objectives (e.g., motif finding and network alignment) and application domains (e.g., epidemiology, health care).  [Read more] [Sept 24, 2018]

Manufacturing USA: Intelligent Human-Robot Collaboration for Smart Factory

NRI: INT: COLLAB: Manufacturing USA: Intelligent Human-Robot Collaboration for Smart Factory

PI: Zhaozheng Yin
Co-PI: Ming C. Leu
Award amount $667,656
Award date: 9/15/18 to 8/31/22

This National Robotics Initiative (NRI) collaborative research project addresses the NSF Big Idea of Work at the Human-Technology Frontier by targeting human-robot collaboration in manufacturing. Recent advances in sensing, computational intelligence, and big data analytics have been rapidly transforming and revolutionizing the manufacturing industry towards robot-rich and digitally connected factories. However, effective, efficient and safe coordination between humans and robots on the factory floor has remained a significant challenge. To meet the need for safe and effective human-robot collaboration in manufacturing, the investigators will research an integrated set of algorithms and robotic test beds to sense, understand, predict and control the interaction of human workers and robots in collaborative manufacturing cells. It is expected that these methods will significantly improve the safety and productivity of hybrid human-robot production systems, thereby promoting their deployment in future "smart factories".  [Read more] [Sept 24, 2018]

NeTS: JUNO2: Collaborative Research: STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities

PI: Sajal K. Das
Award amount: $91,090
Award date: 9/1/18 to 8/31/19

The rapid evolution of data-driven analytics, Internet of things (IoT) and cyber-physical systems (CPS) are fueling a growing set of Smart and Connected Communities (SCC) applications, including for smart transportation and smart energy. However, the deployment of such technological solutions without proper security mechanisms makes them susceptible to data integrity and privacy attacks, as observed in a large number of recent incidents. If not addressed properly, such attacks will not only cripple SCC operations but also influence the extent to which customers are willing to share data. This in turn will make trustworthiness in SCC applications very challenging. To address this, a synergistic team of researchers from the US and Japan, under the JUNO2 program, will collaborate on this project, called STEAM (Secure and Trustworthy framework for integrated Energy and Mobility) to develop a framework to ensure data privacy, data integrity, and trustworthiness in smart and connected communities.  [Read more] [Sept 24, 2018]