WHERE DO OUR GRADUATES GO?

For our computer science students, graduating from Missouri S&T opens up a world of opportunity — Miner alumni can be found working at top corporations across the U.S. and abroad. Among our most recent graduates, you’ll find our computer science alumni employed by the following industry leaders, to name just a few:

- 3M
- Accenture
- Adtran
- Alcatel-Lucent
- Alcoa
- Amazon
- Andersen
- Anheuser-Busch
- AT&T
- Bank of America
- BASF
- Boeing
- Cadence
- Caterpillar
- Cerner
- Cisco
- ConocoPhillips
- DOW
- DST Systems
- EDS
- Ford
- Garmin
- General Family
- Dental Centers
- General Motors
- GMAC Insurance
- Google
- Hallmark
- Honeywell
- HP
- IBM
- IEEE
- Intel
- John Deere
- Maryville
- MasterCard
- Microsoft
- Monsanto
- Motorola
- Naval Research Laboratory
- Plum Creek
- PPG Industries
- ProTech
- Purina
- Raytheon
- RBC Dain Rauscher
- Rockwell Automation
- Sandia National Laboratories
- SBC
- Sprint
- Texaco
- Texas Instruments
- The Harris Foundation
- Toshiba
- TRW
- Union Pacific
- USG
- Verizon
- Naval Research Laboratory
- Plum Creek
- PPG Industries
- ProTech
- Purina
- Raytheon
- RBC Dain Rauscher
- Rockwell Automation
- Sandia National Laboratories
- SBC
- Sprint
- Texaco
- Texas Instruments
- The Harris Foundation
- Toshiba
- TRW
- Union Pacific
- USG
- Verizon

JOB OUTLOOK FOR COMPUTER SCIENCE

With the advent of computers have come an enormous number of new types of jobs. Some require extensive training but not a college degree (e.g., data entry device operators and computer operators). On the other hand, a large number of business and scientifically oriented computer jobs do require a B.S., M.S., or Ph.D. degree. Computers have found their way into every type of business imaginable; consequently, job opportunities are essentially unlimited.

At the B.S. level, there are opportunities for business and scientific applications programmers, system integrators, and software designers. At the M.S. level, opportunities exist in even more areas. Those completing the Ph.D. degree will have employment opportunities in both industry and academia. The Missouri S&T Career Opportunities Center provides several services aimed at helping students find the “right” job.

Computer Science graduates from Missouri S&T work in a variety of environments not only around the world but also in space. Some work for large companies, others prefer the atmosphere of a smaller company. Many of our graduates have started their own successful businesses. Regardless of company size, Computer Science graduates from Missouri S&T are in high demand as evident by the number of companies who specifically recruit our graduates. Average starting salaries for BS graduates in Comp Sci from Missouri S&T range upwards from $64,000 (as of 2016-2017 reported figures) at major companies like Boeing, Cerner, Garmin, Microsoft, Accenture, Lockheed Martin, and Union Pacific Railroad, as well as many consulting firms and startup companies with senior level salaries topping $110K.

A Bachelor of Science degree in Computer Science prepares the student for graduate school or industry to work as a software engineer, systems programmer, systems integrator, or as an applications programmer.
BY THE NUMBERS

55% Percentage of Missouri S&T computer science graduates who report being employed or entering graduate school within 60 days of graduation.

1,001 Number of companies seeking to hire Missouri S&T computer science students through MinerJobs.

$64,674 Average starting salary for B.S. in Computer Science.

$3,152 Average monthly salary for undergraduate co-ops.

$3,038 Average monthly salary for undergraduate summer interns.

A LEADER IN INFORMATION ASSURANCE EDUCATION AND RESEARCH

Missouri S&T is a member of an elite group of universities that meet the federal government’s criteria for providing educational and research opportunities in cyber-security.

A National Center of Academic Excellence in Information Assurance Education and in research, S&T was the first in the state to earn this designation jointly by the U.S. National Security Agency and Department of Homeland Security.

The program is designed to reduce vulnerabilities in the national information infrastructure by promoting the study of “information assurance” in U.S. colleges and universities.

The program also is designed to promote information assurance expertise in various disciplines.

Missouri S&T offers a unique contribution to the information assurance field with our focus on developing ways to protect the nation’s electric power grid, oil, gas and water distribution systems, and transportation systems from terrorist attack.
WHY STUDY COMPUTER SCIENCE AT S&T?

Computer science is an exciting, dynamic field with critical demand and is at the core of the modern world. Computer scientists are involved in all the various aspects of computing including the development of algorithms (techniques for solving problems with computers), software development, and hardware/software implementations.

As a computer science major at Missouri S&T, you’ll learn all the aspects of computing in an undergraduate program accredited by the Computing Accreditation Commission of ABET. You’ll study techniques for computer problem solving (algorithms), developing software, and implementing software-hardware solutions. You’ll take courses that provide a sound basis in “classic” computer science, including:

- Algorithms
- Computer Organization/Architecture
- Data Structures
- Database and File Structures
- Discrete Mathematics & Automata
- Object-Oriented Design
- Operating Systems
- Programming Languages

For your advanced work, you can choose to study: distributed/parallel computing/architecture, software engineering, computer security, bio-inspired computing, pervasive/embedded/fault-tolerant computing, artificial/computational intelligence, sensor/wireless/computer networking, computational science, and internet computing.

All senior Comp Sci majors take the capstone course. This course gives you actual experience working with teams comprised of fellow students and practicing computer scientists. The teams design, test, and maintain variable software systems. While instruction and research are on the leading edge of computing, class size is small to facilitate the interactions of students with faculty. Whether you’re solving problems in science, business, industry, engineering, or in the lab, you’ll be prepared with a computer science degree from Missouri S&T.

GRADUATION REQUIREMENTS

A minimum of 128 credit hours is required for a Bachelor of Science degree in Computer Science and an average of at least two grade points per credit hour must be obtained. All computer science majors must earn a “C” or better grade in each of the following courses: Comp Sci 1570, Comp Sci 1580, Comp Sci 1510, Comp Sci 1200, and Comp Sci 2500. All computer science majors must earn a minimum cumulative grade point average of 2.00 for all computer science courses presented to satisfy the required and elective computer science requirements.

COMPUTER SCIENCE MINOR REQUIREMENTS

A student with a minor in computer science must meet the following requirements:

- A “C” or better grade in at least 18 credit hours of COMP SCI courses, excluding x9xx courses.
- A “C” or better grade in at least 9 credit hours of COMP SCI courses at the 2000 or higher level.
- A “C” or better grade in two of the following courses: COMP SCI 3100, COMP SCI 2200, COMP SCI 3200, COMP SCI 2300, COMP SCI 2500, COMP SCI 3500 and COMP SCI 3800.

A member of the computer science faculty will serve as the student’s minor advisor. The student and his/her minor advisor will plan a course of study to meet the specific interests and needs of the student.
COMPUTER SCIENCE CURRICULUM BY DISCIPLINE

COMPUTER SCIENCE
- Introduction to Computer Science (Comp Sci 1010)
- Introduction to Programming (Comp Sci 1570)
- Introduction to Programming Lab (Comp Sci 1580)
- Data Structures (Comp Sci 1575)
- Data Structures Lab (Comp Sci 1585)
- Discrete Math for Computer Science (Comp Sci 1200)
- Software Engineering I (Comp Sci 3100)
- Introduction to Numerical Methods (Comp Sci 3200)
- Programming Languages/Translators (Comp Sci 3500)
- Introduction to File Processing (Comp Sci 2300)
- Algorithms (Comp Sci 2500)
- Introduction to Operating Systems (Comp Sci 3800)
- Software Systems Development I (Comp Sci 4096)
 - Elective I
 - Elective II
 - Elective III
 - Elective IV
 - Elective V

COMPUTER ENGINEERING
- Introduction to Computer Engineering (CpE 2210)
- Digital Systems Design (CpE 3150)

MATHEMATICS/STATISTICS
- Calculus for Engineers I (1214)
- Calculus for Engineers II (1215)
- Linear Algebra (Math 3108 or 3103)
- Statistics (Stat 3113 or 3115 or 3117 or 5643)

COMMUNICATION
- Exposition and Argumentation (Eng 1120)
- Writing and Research (Eng 1160 or Eng 3560)
- Speech (Sp/MS 1185 or Sp/MS 3282)

LABORATORY SCIENCE
Select one lecture/lab combo from the following list
- Bio Science 1113, 1219
- Chemistry 1310, 1319, 1100
- Physics 1505, 1509
- Geology 1110, 1119 or 1129

SCIENCE & ENGINEERING
- Engineering Physics I (Phys 1135 or Phys 1111-1119)
- Engineering Physics II (Phys 2135 or Phys 2111-2119)
- Elective I
- Elective II
- Elective III
- Elective IV
- Elective V

CONSTITUTIONAL REQUIREMENT
- Elective (History 1200 or 1300 or 1310 or Pol Sc 1200)

HUMANITIES/SOCIAL SCIENCE
- Humanities/Social Science Elective I
- Humanities/Social Science Elective II
- Humanities/Social Science Elective III
- Humanities/Social Science Elective IV

ETHICS
- Philosophy 3225 or 3235 or 4340 or 4368

LITERATURE
- Elective I

FREE ELECTIVES
To bring total hours to 128
- Elective I
- Elective II
- Elective III
CO-OP AND INTERNSHIP PROGRAMS

Students seeking Computer Science co-op academic credit (Comp Sci 2002) must receive pre-approval** from the departmental co-op coordinator (Department Chair) and register for it in the semester they are on co-op for the number of credit hours agreed to by the coordinator. Upon completion of the co-op, students need to submit a 1-2 page report to the coordinator as well as to the COC. The report must include the following:

- Student information
- Employer information
- Period of employment
- A detailed account of all computer science related work done during the co-op
- Supervisor’s name and signature indicating approval of this report

Comp Sci 2002 credits can only be awarded for co-ops with significant Comp Sci content, and count only towards free electives. The number of co-op credits a student can get depends on the intensity of the co-op as determined by the coordinator. Normally 3 credits are granted for a semester of full-time work.

Please also note that before you take up a co-op position, COC may need the following documents from you:

- A copy of the acceptance letter from the company with the salary and the hours
- Fill out some forms to formally get into the co-op program at the COER

HONORS ACADEMY

The Missouri S&T Honors Academy offers students the opportunity to be a part of a community of outstanding scholars who are seeking an enhanced educational experience. This program is designed to instill honors habits to explore ways to search for answers beyond the norm of course syllabi descriptions. The rewards are earning the distinction of “Honor’s Academy Fellow” at graduation, which is noted on the diploma, transcript and commencement program.

At Missouri S&T, Honors Academy students are recognized for their academic excellence and are provided with individualized attention and opportunities to establish leadership development skills, interact with faculty members and participate in special projects including service learning, undergraduate research and other beneficial experiences.

Incoming freshmen are eligible to apply if:

- Their ACT score is a 29 or higher/SAT is 1440 or above, &
- They rank in the top 10% of their high school class or have a minimum GPA of 3.5.

Incoming transfer students and current S&T students are eligible to apply if:

- They have a minimum GPA of 3.5, and
- A minimum of 24 graded, college-level credits.

UNDERGRADUATE RESEARCH

There are many opportunities to join in research with faculty, graduate students, and undergraduates. In undergraduate research, you can explore a topic of individual interest and get credit (Comp Sci 4099) for your work. Some of the past projects have included developing visualizations for power systems, creating software for elementary school students to learn about Computer Science, helping build evolutionary algorithms to defend against cyber attacks, and building custom interfaces for lab equipment. Undergraduate research is a great resume builder and can be a gateway into a graduate program.

The Opportunities for Undergraduate Research Experience (OURE) program, through the Office of Undergraduate Studies, has been established to expand opportunities for a more active form of learning by students, encourage the interaction of undergraduate students with faculty, expand the level of research activity on the campus, help recruit superior students into our graduate program, and demonstrate that teaching and research are compatible and mutually reinforcing.
THE ASSOCIATION FOR COMPUTING MACHINERY (ACM)

The Missouri University of Science and Technology student chapter of the Association for Computing Machinery was organized in 1962 and was the second one in the United States. The purpose of this active student organization is to provide information on the science and art of information processing, including the views of prominent speakers on many different Computer Science oriented topics. Topics of discussion at meetings include the study, design, development, and application of modern technology, computing techniques, and appropriate languages for general information processing, storage, retrieval, transmission/communication, and processing data of all kinds. Membership is available to any student interested in the organization’s activities, becoming involved in numerous campus computing activities, and sponsoring several informal social events each year. In 1981, the Missouri S&T Programming Team placed first in a field of ten teams at the site and first in a field of sixty teams in the Mid-Central Regional Programming Contest.

THE ASSOCIATION FOR COMPUTING MACHINERY-WOMEN (ACM-W)

ACM-W is the Association for Computing Machinery Committee on Women in Computing. It celebrates, informs and supports women in computing, and works with the ACM-W community of computer scientists, educators, employers and policy makers to improve working and learning environments for women.

THE ASSOCIATION FOR COMPUTING MACHINERY-SPECIAL INTEREST GROUP – SECURITY (ACM SIG-SEC)

The Missouri S&T Association for Computing Machinery student branch Special Interest Group: Security (ACM SIG-Sec) is a student group focused on computer and network security. SIG-Sec meetings are biweekly, featuring a wide variety of speakers on topics ranging from software vulnerabilities and real-world tools to security projects and research. The group also works on its own security projects, such as building antennas, (antennas made from soup, coffee or Pringles cans that increase the gain of wireless cards), wireless auditing (mapping open wireless access points so we can inform the owners), security auditing of student computers, and red team vs. blue team competition (controlled environment competition where each team defends their server from the attacks/attempted entry of the other team).

THE ASSOCIATION FOR COMPUTING MACHINERY-SPECIAL INTEREST GROUP – GAME (ACM SIG-GAME & MEGAMINER)

SIG-Game is a student operated software development organization. Each semester we develop a unique game aimed at AI vs AI gameplay, and launch it at the MegaMinerAI competition. There we invite students, alumni, employers, and anyone interested to compete for 24 hours to see who can code the best AI!

INSTITUTE FOR ELECTRICAL AND ELECTRONIC ENGINEERS COMPUTER SOCIETY (IEEE-CS)

The Missouri S&T Computer Society student branch of the IEEE (S&T CSSI) was established in Fall 2009. The primary purpose of the society is to promote and disseminate knowledge of the theory and practices of all aspects of computer science, computer engineering, electrical engineering, allied branches of engineering or the related arts and sciences, as well as the furtherance of the professional development of its members.
SUGGESTED COURSE OF STUDY

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

FRESHMAN YEAR

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>CR</th>
<th>Spring Semester</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sci 1010 Intro to Computer Science</td>
<td>1</td>
<td>Comp Sci 1200 Discrete Mathematics</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sci 1570 Intro to Programming</td>
<td>3</td>
<td>Comp Sci 1575 (1510) Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sci 1580 Intro to Programming Lab</td>
<td>1</td>
<td>Comp Sci 1585 Data Structures Lab</td>
<td>1</td>
</tr>
<tr>
<td>Eng 1120 Exposition and Argumentation</td>
<td>3</td>
<td>English 1160 Writing and Research</td>
<td>3</td>
</tr>
<tr>
<td>Math 1214 Calculus for Engineers I</td>
<td>4</td>
<td>SP&MS 1185 Intro to Speech</td>
<td>3</td>
</tr>
<tr>
<td>Humanities Elective</td>
<td>3</td>
<td>Math 1215 Calculus for Engineers II</td>
<td>4</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

SOHOMORE YEAR

<table>
<thead>
<tr>
<th>Fall Semester</th>
<th>CR</th>
<th>Spring Semester</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sci 2200 Theory of Computer Science</td>
<td>3</td>
<td>Comp Sci 2300 File Struct and Intro Database Sys</td>
<td>3</td>
</tr>
<tr>
<td>Comp Sci 2500- Algorithms</td>
<td>3</td>
<td>Comp Eng 2210 Intro to Comp Eng</td>
<td>3</td>
</tr>
<tr>
<td>Social Science Elective</td>
<td>3</td>
<td>Math 3108 Linera Algebra I</td>
<td>3</td>
</tr>
<tr>
<td>Physics 1135</td>
<td>4</td>
<td>Physics 2135</td>
<td>4</td>
</tr>
<tr>
<td>Statistics Elective</td>
<td>3</td>
<td>Literature Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Notes

1) Any science lecture-laboratory course or course pair totaling at least four hours credit. The laboratory is mandatory in all cases. These course(s) may be selected from: CHEM 1310 and CHEM 1319; CHEM 1351; BIO SCI 1113 and BIO SCI 1219; PHYSICS 1505 and PHYSICS 1509; GEOLOGY 1110 and GEOLOGY 1119; GEOLOGY 1120 and GEOLOGY 1129; BIO SCI 1223 and BIO SCI 1229; BIO SCI 2353 and BIO SCI 2359.

2) Any nine credit hours of social science courses approved on the list maintained on the Computer Science website. One course must satisfy the Missouri and U.S. Constitution requirement. CS 4700 may be counted as a Social Science elective.

3) Either PHYSICS 1135 or PHYSICS 1111-PHYSICS 1119; either PHYSICS 2135 or PHYSICS 2111-PHYSICS 2119

4) Sp & MS 1185 or Sp & MS 3282.

5) One literature and one humanities course approved on the list maintained on the Computer Science website.

6) One of STAT 3113, STAT 3115, STAT 3117 or STAT 5643.

7) MATH 3103 or MATH 3108

8) Courses chosen from any field so that 128 hours are completed. These and only these courses may be taken pass/fail and only one course may be taken pass/fail each semester. Some courses such as algebra, trigonometry, MATH 1214, MATH 1215, MATH 1221, PHYSICS 1111, PHYSICS 1119, PHYSICS 1135, PHYSICS 2135, PHYSICS 2111, PHYSICS 2119, PHYSICS 1145, PHYSICS 2145 and the first two years of ROTC do not count toward the free electives.
JUNIOR YEAR

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>CR</th>
<th>Course</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sci 3100 Software Engineering I</td>
<td>3</td>
<td>Comp Sci 3600 Introduction to Computer Security</td>
<td>3</td>
</tr>
<tr>
<td>(Prerequisite: Comp Sci 2500 and at least Junior standing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp Sci 3500 Program Languages and Translators</td>
<td>3</td>
<td>Comp Sci 3800 -Intro Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>(Prerequisite: Comp Sci 2200)</td>
<td></td>
<td>(Prerequisite: Comp Sci 1510, Comp Sci 1200, and Comp Eng 3150)</td>
<td></td>
</tr>
<tr>
<td>Comp Eng 3150 Digital Systems Design</td>
<td>3</td>
<td>Laboratory Science course(s)</td>
<td>5</td>
</tr>
<tr>
<td>(Prerequisite: Comp Eng 2210 and Comp Sci 1570)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History Elective</td>
<td>3</td>
<td>Eng/Science Electives</td>
<td>3</td>
</tr>
<tr>
<td>Ethics Elective</td>
<td>3</td>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>CR</th>
<th>Course</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp Sci 3600 Introduction to Computer Security</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp Sci 3800 -Intro Operating Systems</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Prerequisite: Comp Sci 1510, Comp Sci 1200, and Comp Eng 3150)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory Science course(s)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng/Science Electives</td>
<td>3</td>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

SENIOR YEAR

Fall Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>CR</th>
<th>Course</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sci 4096 Software Systems Development I</td>
<td>3</td>
<td>Comp Sci Electives</td>
<td>9</td>
</tr>
<tr>
<td>(Prerequisite: Comp Sci 3100 and one of Phil 3225, Phil 3235, Phil 4360, or Phil 4368)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comp Sci Electives</td>
<td>6</td>
<td>Eng/Science Electives</td>
<td>3</td>
</tr>
<tr>
<td>Eng/Science Electives</td>
<td>3</td>
<td>Free Elective</td>
<td>5</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Spring Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>CR</th>
<th>Course</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp Sci Electives</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eng/Science Electives</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free Elective</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

9) Fifteen hours of elective Comp Sci courses excluding COMP SCI 2002, COMP SCI 4700, Comp Sci 2001 – Domain Exploration and Innovation Methods, Comp Sci 3001 – Skill Development for Entrepreneurs and Innovators, and all Comp Sci x9xx courses. At least nine hours must be 5000-level or higher. At least nine hours must be lecture courses.

10) Any nine hours chosen from departments that offer a degree associated with either the Discipline Specific Curricula Committee for Sciences or the Discipline Specific Curricula Committee for Engineering, excluding computer science. These may not be MATH 1208, MATH 1214, MATH 1215, MATH 1221, PHYSICS 1111, PHYSICS 1119, PHYSICS 1135, PHYSICS 2135, PHYSICS 2111, PHYSICS 2119, PHYSICS 1145, or PHYSICS 2145.

11) One of PHILOS 3225 or PHILOS 3235 or PHILOS 4340 or PHILOS 4368.

12) Laboratory not required.

13) ENGL 1160 or ENGL 3560.

14) One of Comp Sci 1010, BIO SCI 1201, CHEM 1110, PHYSICS 1101, MATH 1101, or FR ENG 1100.
In the department, you'll have access to high-performance computers running Linux and Windows, and a distributed computing cluster for running parallel algorithms as well as computationally expensive sequential tasks. The department supports many programming languages including C, C++, Java, Perl, Python, and packages such as database systems (Oracle). Computer Learning Centers (CLCs) across campus are open 24/7, and high-speed Internet access is available in Missouri S&T residence halls, most Greek houses and in the community. The Computer Science Department at Missouri S&T makes use of both its own laboratories as well as the University Computer Facilities. The Department maintains the laboratories described next. Additional information for some of these laboratories can be found on the department's web page at cs.mst.edu.

Applied Computational Intelligence Laboratory

Students working in the laboratory gain many advantages, including collaboration in a work environment, continued involvement with research, the positive influence of role models and mentors, and, more often than not, an opportunity to publish. (Publishing is required for all graduate students.) The ACIL welcomes small and large business cooperative ventures in intelligent computing.

Computer Vision and Biomedical Imaging Laboratory

We are interested in computing technologies and systems that are theoretically-sound and practically-applicable in civilian, military, healthcare and multimedia applications. To that end, we are particularly interested in visual perception, sensor fusion, learning methods that can make these technologies as realities. These research activities lead to algorithms and systems capable of understanding object behaviors in biomedical and natural scene images.

Critical Infrastructure Protection Laboratory

Is to research in advanced methods of security applied within the realm of critical cyber and cyber-physical infrastructures. The focus is on the use of rigorous mathematics through formal methods to create and analyze fault-tolerant and secure real-time distributed computing systems applied to critical infrastructure protection. The laboratory supports undergraduate, graduate, and faculty researchers. Students in the laboratory participate in the campus Center for Academic Excellence in Information Assurance and Research, the Intelligent Systems Center, and the Energy Research and Development Center.

DEPARTMENT OF COMPUTER SCIENCE
Evolutionary Computing

Automated Design of Algorithms
- Create highly customized solutions for repeated solving of instances of the same problem class, where high a priori computational cost is effectively amortized
- Create tools to assist practitioners with automating the design of algorithms for custom applications

Coevolutionary Computational Game Theory
- Approximate Nash Equilibria with Coevolution to support real-world game theoretic problems
- Automate the identification of adversarial threats
- Automate the mitigation of identified threats

Cyber Security
- Create Hyper-Heuristics to automate the design of SAT Solvers for program understanding
- Coevolve attackers & defenders for enterprise computer networks

PoC: Daniel R. Tauritz, Associate Chair, Department of Computer Science
Associate Professor of Computer Science
tauritzd@mst.edu, http://web.mst.edu/~tauritzd

Recent Funding
- Los Alamos National Laboratory
- Sandia National Laboratories
- National Security Agency
Data Mining & Graph Data Mining Laboratory

The mission of data mining laboratory is to develop effective and efficient data analysis techniques for emerging data intensive applications. Our research focuses on data mining and big data analytics, with application to urban computing, human mobility modeling, wireless intelligence, recommender systems, biological networks, consumer analytics, and health care.

Natural Computation Laboratory

Is to develop novel types of computational problem solving methods inspired by nature which are both more powerful and user-friendlier than the current state-of-the-art, and to apply them to real-world problem solving. Since the lab’s founding in 2002, its computational problem solving method of choice has been Evolutionary Computing.

Web and Wireless Computing (W2C) Laboratory and NSF Industry-University Research Center on Net-Centric Software Systems

Is to design to carry out cutting edge research in different aspects of data management (security, compression, replication, caching, query processing, aggregation, fusion) in wireless networks and cloud computing environment. Our focus is on scientific research to advance the state of art in these areas. The current projects are supported by NSF, DOE, ARL, AFRL, NIST, UM System, etc. The current researchers in the lab are pursuing their PhD/MS degree in different areas of interest to the W2C lab. The lab is well-equipped with over 50 3.2 Ghz PCs, 5 Dell Server, linux machines, laptops etc. The lab also has sensor network test-beds consists of Crossbow sensor motes like Telosb, Mica2 and Missouri S&T motes.
MEET THE FACULTY & STAFF

SAJAL K. DAS
Daniel St. Clair Endowed Chair

Areas of Interest
Wireless and Sensor Networks, Mobile and Pervasive Computing, Smart Living and Smart Healthcare, Applied Graph Theory and Game Theory

MICHAEL GOSNELL
Assistant Teaching Professor

Teaching Interests

BRUCE M. MCMILLIN
Interim Department Chair, Assistant Dean for College of Engineering and Computing (CEC), Professor

Areas of Interest
Cyber-Physical Systems, CyberSecurity and Smart Grid

SANJAY MADRIA
Curators’ Distinguished Professor

Areas of Interest

YANJIE FU
Assistant Professor

Areas of Interest
Data Mining and Business Analytics

JENNIFER LEOPOLD
Associate Professor

Areas of Interest
Data Mining, Automated Spatial Reasoning and Scientific Visualization

LINDA MARKOWSKY
Assistant Research Professor

Areas of Interest
CyberSecurity

A. RICARDO MORALES
Assistant Teaching Professor

Teaching Interests
Introduction to Programming with C++, Data Structures, Discrete Mathematics For Computer Science, Algorithms

JENNIFER LEOPOLD
Associate Professor

Areas of Interest
Data Mining, Automated Spatial Reasoning and Scientific Visualization

GEORGE MARKOWSKY
Associate Chair for Graduate Studies, Professor

Areas of Interest
CyberSecurity
CLAYTON PRICE
Associate Teaching Professor
Teaching Interests
Introduction to Computer Science, Introduction to Programming with C++, C++ Programming Lab, Data Structures I, Introduction to Numerical Analysis, Object Oriented Numerical Modeling I

VENKATA SIDDHARDH
Assistant Professor
Areas of Interest

CHAMAN SABHARWAL
Professor
Areas of Interest

DANIEL TAURITZ
Associate Chair for Undergraduate Studies and Outreach Activities, Associate Professor
Areas of Interest

PATRICK TAYLOR
Assistant Teaching Professor
Teaching Interests
Data Structures, Introduction to Computer Security, Introduction to Programming, Bioinformatics

ZHAOZHENG YIN
Associate Professor and St. Clair Fellow
Areas of Interest
Computer Vision, Biomedical Imaging, Machine Learning, Signal Processing, and Robotics.

PEIZHAN ZHU
Assistant Teaching Professor
Teaching Interests
MISSOURI
S&T
Computer Science
JOINT APPOINTMENT FACULTY

JAGANNATHAN SARANGAPANI
Rutledge Emerson Endowed Chair Professor in Electrical Engineering

SAHRA SEDIGH
Associate Professor in Computer Engineering

DONALD WUNSCH
Mary Finley Endowed Chair Professor in Computer Engineering
GET TO KNOW OUR CAMPUS

Can't find what you're looking for? 800-522-0938

MISSOURI STATE CAMPUS IS LOCATED AT INTELLIGE 44

at exit 115

© 2023 MISSOURI STATE UNIVERSITY